Python
from meibelai import Meibelai import os with Meibelai( api_key_header=os.getenv("MEIBELAI_API_KEY_HEADER", ""), ) as m_client: res = m_client.rag.update_rag_config(datasource_id="<id>", description="stable suckle volleyball yieldingly cleverly shyly", collection_id="<id>", extractor_model={ "name": "<value>", "endpoint": "<value>", }, embedding_model={ "name": "<value>", "endpoint": "<value>", "dimensions": 477647, }, sparse_embedding_model={ "name": "<value>", "endpoint": "<value>", }, collect_metadata=False, metadata_options={ "create_title": True, "extract_questions_answers": True, "extract_summary": False, "has_consumer_content": True, "get_bibliographical_information": True, }) # Handle response print(res)
{ "message": "<string>" }
UpdateRagConfigRequest
ExtractorModel
Show child attributes
EmbeddingModel
SparseEmbeddingModel
MetadataOptions
Successful Response
UpdateRagConfigResponse
Was this page helpful?