from meibelai import Meibelai
import os
with Meibelai(
api_key_header=os.getenv("MEIBELAI_API_KEY_HEADER", ""),
) as m_client:
res = m_client.rag.update_rag_config(datasource_id="<id>", description="stable suckle volleyball yieldingly cleverly shyly", collection_id="<id>", extractor_model={
"name": "<value>",
"endpoint": "<value>",
}, embedding_model={
"name": "<value>",
"endpoint": "<value>",
"dimensions": 477647,
}, sparse_embedding_model={
"name": "<value>",
"endpoint": "<value>",
}, collect_metadata=False, metadata_options={
"create_title": True,
"extract_questions_answers": True,
"extract_summary": False,
"has_consumer_content": True,
"get_bibliographical_information": True,
})
# Handle response
print(res)
{
"message": "<string>"
}
from meibelai import Meibelai
import os
with Meibelai(
api_key_header=os.getenv("MEIBELAI_API_KEY_HEADER", ""),
) as m_client:
res = m_client.rag.update_rag_config(datasource_id="<id>", description="stable suckle volleyball yieldingly cleverly shyly", collection_id="<id>", extractor_model={
"name": "<value>",
"endpoint": "<value>",
}, embedding_model={
"name": "<value>",
"endpoint": "<value>",
"dimensions": 477647,
}, sparse_embedding_model={
"name": "<value>",
"endpoint": "<value>",
}, collect_metadata=False, metadata_options={
"create_title": True,
"extract_questions_answers": True,
"extract_summary": False,
"has_consumer_content": True,
"get_bibliographical_information": True,
})
# Handle response
print(res)
{
"message": "<string>"
}
UpdateRagConfigRequest
Successful Response
UpdateRagConfigResponse