Python
from meibelai import Meibelai import os with Meibelai( api_key_header=os.getenv("MEIBELAI_API_KEY_HEADER", ""), ) as m_client: res = m_client.rag.get_rag_config(datasource_id="<id>") # Handle response print(res)
{ "datasource_id": "<string>", "description": "<string>", "collection_id": "<string>", "extractor_model": { "name": "<string>", "endpoint": "<string>" }, "embedding_model": { "name": "<string>", "endpoint": "<string>", "dimensions": 123 }, "sparse_embedding_model": { "name": "<string>", "endpoint": "<string>" }, "collect_metadata": true, "metadata_options": { "create_title": true, "extract_questions_answers": true, "extract_summary": true, "has_consumer_content": true, "get_bibliographical_information": true }, "created_by": "<string>", "updated_by": "<string>" }
Successful Response
RagConfig
ExtractorModel
Show child attributes
EmbeddingModel
SparseEmbeddingModel
MetadataOptions
Was this page helpful?