from meibelai import Meibelai
import os
with Meibelai(
api_key_header=os.getenv("MEIBELAI_API_KEY_HEADER", ""),
) as m_client:
res = m_client.rag.get_rag_config(datasource_id="<id>")
# Handle response
print(res)
{
"datasource_id": "<string>",
"description": "<string>",
"collection_id": "<string>",
"extractor_model": {
"name": "<string>",
"endpoint": "<string>"
},
"embedding_model": {
"name": "<string>",
"endpoint": "<string>",
"dimensions": 123
},
"sparse_embedding_model": {
"name": "<string>",
"endpoint": "<string>"
},
"collect_metadata": true,
"metadata_options": {
"create_title": true,
"extract_questions_answers": true,
"extract_summary": true,
"has_consumer_content": true,
"get_bibliographical_information": true
},
"created_by": "<string>",
"updated_by": "<string>"
}
from meibelai import Meibelai
import os
with Meibelai(
api_key_header=os.getenv("MEIBELAI_API_KEY_HEADER", ""),
) as m_client:
res = m_client.rag.get_rag_config(datasource_id="<id>")
# Handle response
print(res)
{
"datasource_id": "<string>",
"description": "<string>",
"collection_id": "<string>",
"extractor_model": {
"name": "<string>",
"endpoint": "<string>"
},
"embedding_model": {
"name": "<string>",
"endpoint": "<string>",
"dimensions": 123
},
"sparse_embedding_model": {
"name": "<string>",
"endpoint": "<string>"
},
"collect_metadata": true,
"metadata_options": {
"create_title": true,
"extract_questions_answers": true,
"extract_summary": true,
"has_consumer_content": true,
"get_bibliographical_information": true
},
"created_by": "<string>",
"updated_by": "<string>"
}
Successful Response
RagConfig